— p——

D-AO46 523 MASSACHUSETTS INST OF TECH CAMBRIDGE RESEARCH LAB OF==ETC F/G 12/1
VECTOR RADIX FAST FOURIER TRANSFORM: (U) :
1977 D B HARRISs J H MCCLELLANs D S CHAN NO0014=75=C~0951

UNCLASSIFIED NL

| oF | END

o DATE
AD465623 FILMED
. | 2= 77

R 22
“I"_l_=9 e |

“m o ke

= L
125 flis e

R ey

|

POT

Bl

Lqiks

i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE When Dace Enternd)

REPORT DOCUMENTATICON PAGE

L
[

READ INSTRUCTIONS
BEFCORE COMPLETING FORM

1. REPORT NUMBER . GOVT ACCHsSPoNING.l 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and.Subtitle)
VECTOR RADIX FAST POURIFR TRANSFOR

- o

\\1 5. TYFE OF REPORT & PER/OD COVERED
M,

) Reprint

ADA046523

br@

6. PERFORMING ORG. REPORT NUMBE?

Q) 4
DNE. fHarris, L fMcClellan, DNS. K. /cmu;)
i PAHSW./Schuessler

9. PERFORMING ORGANIZATION NAME AND ADDRESS

< N T, = 55
. AREA & WORK UNIT NUMBERS
Research Laboratory of Electronics/ 2 -

Massachusetts Institute of Technology NR049-308
Cambridge, Massachusetts 02139 N
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPCRT DATE /
Advanced Research Projects Agency g

1400 Wilson Boulevard

Arlington, Virginia 22209

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)
Office of Naval Research

Information Systems Program, Code S437
Arlington, Virginia 22217 15a.

. NUMBER OF PA

S—

Unclassified

DECLASSIFICATION/ COWNGRADING
SCHEDULE

oD C
0 (CI AP
0 NOV 17 1977

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUT!ON STATEMENT (of the abstract entered in Block 20. if different from Report) UL ” m U U ,
F

LA

18. SUPPLEMENTARY NOTES

Proc. 1977 IEEE International Conference on Acoustics,

Speech and Signal
Processing, May 9-11, 1977, Hartford, Connecticut,

pp. 548-551

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)
Fast Fourier transform

Vector radix FFT
Digital signal processing

AD No.—
D0C FILE_COPY

@ ABSTRACT (Continue on reverse side If necessary and identify by block numbar)
A new radix-2 two-dimensional direct FI"T“developed by Rivard is generzalized
in this paper to include arbitrary radices and non-square arrays. It is shown
that the radix-4 version of this algorithm may reqguire significantly fewer com-
putations than conventional row-column transform methods. Also, the new
algorithm eliminates the matrix transpose operation normally required when
the array must reside on a bulk storage device. It requires the same number
of passes over the array on kulk storage as efficient matrix transpose routines

but produces the transform in ' (-reversed order. An additional pass o/_:r—l—l/;j

FORM e
0D s UNCLASSIFIED (e ?

SECURITY CL AS’:IVI(:_ATI(N OF IHIS PAGE (When Date Ente: sd)

A

1473

EDITION OF 1 HOV 65 1S COO0 L FTE

45 P

UNCIASSIEZSD a

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

>data is necessary to sort the array if normal ordering is desired.

UNCLASSIFIED

SECURITY CLASSIFICATION OF TiiS PAGE(When Data Entered)

T

1977 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, May 9-~11, 1977, Hartford, Conn.

B

VECTOR RADIX FAST FOURIER TRANSFORM

David B. Harris, James H. McClellan
David S. K. Chan and Hans W. Schuessler

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Mass. 02139

ABSTRACT

A new radix-2 two-dimensional direct FFT
developed by Rivard is generalized in this paper
to include arbitrary radices and non-square arrays.
It is shown that the radix-4 version of this algo-
rithm may require significantly fewer computations
than conventional row-column transform methods.
Also, the new algorithm eliminates the matrix
transpose operation normally required when the
array must reside on a bulk storage device. It
requires the same number of passes over the array
on bulk storage as efficient matrix transpose
routines, but produces the transform in bit-
reversed order. An additional pass over the data
is necessary to sort the array if normal ordering
is desired.

INTRODUCTION

Since the appearance of the original Cooley-
Tukey algorithm in 1965, the standard methods of
computing the two-dimensional (2-D) discrete
Fourier transform (DFT) of an array have capital-
ized on the separability of the 2-D DFT [1]. Using
a 1-D FFT algorithm, row-wise and columnwise, 1-D
DFT's can be computed to yield the 2-D transform.
This scheme amounts to decimating and transforming
the array first in one index and then in the other.

A new algorithm which performs the decimation
in both indices simultaneously has been derived by
Rivard using a holor algebra formalism [2]). Rivard
demonstrated that his radix-2 direct 2-D FFT elim-
inates 25% of the multiplies required by the con-
ventional row-column approach.

The purpose of this paper is to present an
alternate derivation of the new algorithm and to
extend it to rectanqular arrays and arbitrary

This work was supported in part by the Advanced
Research Projects Agency monitored by ONR under
Contract NO0014-75-C=0951=NR 049-308 and in part
by the National Science Foundation under Grant
ENG71-02319 488,

radices. Further, we show that even larger
savings in multiplies are obtained when the algo-
rithm is generalized to operate with larger
radices and on higher dimensional arrays. We
refer to the general algorithm as the vector
radix algorithm, since to specify the decimation
of the array, multiple radices are required, one
for each index of the array.

An additional, machine dependent, implication
of the new algorithm is explored here as well.
When the DFT computation is implemented on a
computer with an insufficient amount of core
memory to contain the entire array, a matrix
transpose operation is a necessary component of
the row-column approach. This fact has occasioned
a literature on fast transpose techniques, led by
Eklundh [3]. However, the vector radix algorithm
requires no transpose. The transpose is, in
effect, incorporated into the transform. A vector
radix transform requires the same number of passes
over the array on secondary storage (e.g. disk)
as the Eklundh transpose algorithm, when the
resulting DFT can be tolerated in bit reversed
order. If the DFT must be in correct order, an
additional transfer of the array is required to
perform bit reversed sorting. On a machine which
is I/0 intensive, this extra pass over the array
may compromise the computational advantages of
the new algorithm.

DERIVATION

As with the one-dimensional FFT algorithm,
the new direct two-dimensional FFT is derived by
decomposing the DFT into sums of smaller DFT's
multiplied by "twiddle" factors. We derive here
a single stage of the general vector radix algo-
rithm for the decimation in time case. This is
all that is necessary, since the complete algo-
rithm is obtained by recursive application of this
basic decomposition.

We suppose the 2-D DFT
M-1 N-1

X(k,2) =] J x(m,n] w:m w:"
m=0 n=0
k=0,...,M=1 2=0,...,N=1 (1)

of the MxN array x(m,n] is desired, where

wM = exp(=j2m/M)

B T =t = s et

"

SO

Provided radix rl divides M and radix r2 divides N:

M/rl =P N/r2 = Q integers, (2)
the DFT may be computed with an rlxr2 stage. ‘Using
the change of variables:

m = rlp+u n=r2q+v
p=0,...,P-1 q=0,...,0-1 (3)

u = 0,...,r1-1 v=0,...,r2—l

the DFT (1) is decomposed into r.r_ PxQ DFT's.
Performing the substitution of variables of (3)
in equation (1), we obtain:
S
X8y = F P O it ptugrabe] -
p=0 u=0 g=0 v=0

k(rlp+u{ wl(r2q+v)

wM N (4)
From equation (2):
k (r_p+u) L(x_g+v)
1 o kD skt 2 S lqe sy
"y i wﬁ w: " & wQ | 2!

Substituting the relations of (5) into equation(4),
we obtain the desired result:

rl—l r2—1
v _uv
Xk, =3 § wYw (k,2) (6)
u=0 v=0 L N XPQ
where
P-1 0-1 :
X:;(k.l)) } xIx p+u,r,q+v] w;p WA
p=0 g=0 1 Q

is the 2-D DFT of a PxQ element array.

We introduce a second change of variables to

split the computation of X(k,%) into rlxrz element
butterfly groupings:

k = a+bP L = c+dQ

a=0,...,P~1 e® 0ypuse Q=1 (7)

b = 0,...,!1-1 d-= O,...,r2-1

Performing the change of variables (7) on equation
(6) yields: 2. oL e

1 2
X(atbP, c+dQ) =) wlatbPlu L (c+dQ)v
M N
u=0 v=0
uv
pr (a+bP, c+dQ) . (8)
Again:
"(a+bP)u = wauwbu; w(c+dQ)v - wcvwdv (9)
M M rl N N r2

The PxQ point DFT's are periodic:

[E%:

uv uv
XPQ(a+bP, c+dQ) = XPQ(a'C) - (10)
Using substitutions (9) and 10) in equation (8)
produces: L
: : u _dv
X(at+bP, c+dQ) = | [W W
u=0 v=0 T1 2
au cv, _uv
[(wM wN) XPQ(a,c)l. (11)

Equation (11) defines the basic structure of the
rlxr2 butterfly. A few observations will clarify

this. First, there is one butterfly for each

combination of values of a and ¢, giving a total
of PQ butterflies. Thus, a and c are the butter-
fly indices. Each butterfly computes rlrz values

1r2 values

of the smaller PxQ element DFT's (indexed by u and
v). As input to the butterfly, one element is
taken from each PxQ point transform. These ele-
ments are not used by any other butterflies in

the stage, so that the rlr2 output values of

of X(*,*) (indexed by b and d4) from r

the butterfly may be stored in the memory loca-
tions occupied by the input elements. Therefore,
as with the 1-D FFT algorithm, the vector radix
transform may be computed in place.

The inputs to the butterfly are premultiplied
by the twiddle factors (in parentheses), then an

rlxr2 2-D DFT of the resulting array (in square

brackets) is computed. The fact that the butter-
fly can be interpreted as a 2-D DFT calculation
suggests several structures for performing the
computation. The conventional row-column FFT
structure can be employed or the vector radix
approach can be used. The latter is generally
more efficient.

One very important observation is that the

product of the twiddle factors w:“ and w;v may be

precomputed and stored in a table. The computa-
tional advantage enjoyed by the vector radix al-
gorithm arises from the fact that such products
are not computed, whereas they are computed impli-
citly in the row-column approach.

As an example we consider the radix 2x2 case,
v A 5
where M=N=2", v an integer, and rl=r2=2‘ Equatim

(11) reduces to:

S|
a8, a8y] 7 (P
2 2
u=0 v=0
au+cv u v
LG %y § @) (12)
2 2

a,c=0,...,N/2-1 b,d=0,1
One possible butterfly structure for the
computation of equation (12) is shown in Figure 1.
This structure has a minimum number of adds and
multiplies, and is the same as an efficient radix

B ek b o laia e 448 ¢ 2

MR i L B 20 oo b J il i

four one-dimensional butterfly structure with the
internal multiplies by j removed.

1
0

0
F E(a,c) 7 A FNN(a,c)
2 wc
N
F E L2
N
N ﬁ(a'C) A o FNN(a + 2.c)
2:2 +
a+c
W
N +
Fll (a,c) d X

+ —,c +
FNN(a yC

[N13-4

o
—

N
2 2)

Figure 1: Radix 2x2 Butterfly

x (0,01
x[0,2] X[0,1]
x[0,1] X[0,2]

0
x[0,3] X[0,3]
\ 7/
x[2,0] \/ X[1,0]
x(2,2] X[1,1]
)
x[2,1] // \\ X[1,2]
x(2,31 / \ X(1,3}
& W

Xx{0,0]}

o 1O 10 Yo

o 10 YO Yo

¢

()
x[1,0] . .\ /‘ X[2,0]
x11,2] \ / X(2,1]
(1,11 : X(2,2]
x[1,3] /\ X[2,3)
Q)) A
%[3,0] X[(3,0]

o 12

o Jo

(L

0
x(3,2] - X[3;11
x(3,11 £ X(3,2]
x(3,3] = X13,3]

Figure 2: 4x4 DFT with radix 2x2 algorithm.
Solid circles indicate 2x2 butterflies and

twiddle factor multiplies by wk are indicated
4
by the exponents k.

In Figure 2 we display the radix 2x2 structure
for computation of a 4x4 (v=2) element DFT. Rows
of the bit-reversed array are concatenated and
arranged vertically on the left hand side of the
figure. As is generally true for the 2x2 algorithm,
only 2 rows of the array are accessed simultaneous-
ly, so that 2 rows worth of core storage are suf-
ficient to implement the algorithm.

COMPARISON AND DISCUSSION

Introduction of the vector radix FFT provides

some flexibility in trading CPU speed against I/O
transfer rate. In an attempt to quantify this
tradeoff, statistics for the two algorithms are
presented in a table at the end of this section.
The total number of complex multiplies and butter-
flies required for NxN transforms are tabulated
for both algorithms and various radices. The
number of butterflies is included as a partial
measure of the amount of "overhead" that the
algorithms might be expected to have.

In counting the number of multiplies
we adopt the philosophy that all butterflies are
treated identically. This implies that all
twiddle factor multiplies are counted for the
second and subsequent stages. Twiddle factors
are unity in the first stage, so these multiplies
are not counted. Multiplies by *1 and #j interral
to the butterflies are not counted.

As a figure of relative computational
speed, the ratio of the total number of multiplies
rgquired by each algorithm to the total number of
multiplies required by the radix 2 row-column
algorithm (for N=4096) is also tabulated.

The left-hand side of the table contains
information on the number of times that the entire
array must be transfered from bulk memory to core
memory and back. This information is presented as
a function of the number of rows of the array (2,
4,8,16) that can be stored in core memory. It is
assumed that the Eklundh transpose algorithm is
used in the row-column approach. This requires
logZN/loqu transfers, where R is the available

number of rows of core storage and we assume that
N is a power of R. No extra transfers are neces-
sary to compute the row and column FFT's, since
these may be computed during the first and last
stages of the Eklundh algorithm. The vector radix
algorithm requires 1oq2N/1og2R +1 passes over the

array, since (in the radix 2x2 case) 1092R stages

of the FFT may be computed per array transfer.
The extra pass over the array in the vector radix
algorithm is necessitated by the 2-D bit-reversed
sorting of the data.

It is readily apparent that the vector
radix rxr algorithm has fewer multiplies and but-
terflies than the row-column radix r algorithm.

In the case where r=2, there is a 25% reduction

in number of multiplies and fewer, albeit more
complicated, butterflies with the 2x2 algorithm.
Experiments with FORTRAN codings of the two algo-
rithms have shown that a 25% reduction in computa-
tion time is achieved in practice for N=64.

On the basis of relative number of multi-
plies and butterflies, we conclude that the radix
4 row-column algorithm has about the same computa-
tional complexity as the vector radix 2x2 algori-
thm. The fact that the radix 4 1-D algorithm re-
quires one less array transfer argues strongly in
its favor. Its disadvantages are less flexibility
in transform size (N must be a power of 4 as
opposed to a power of 2) and the fact that it
produces the transpose of the DFT instead of the
normally-ordered DFT. This last, rather minor,

ol ot o

e

problem is characteristic of all radices in the

row-column approach. 2d =
a-1
The larger radix algorithms are even more d -2
attractive as far as the relative numbers of
multiplies and butterflies are concerned. The for d-dimensional transforms. For large values
radix 4x4 and 8x8 algorithms appear to be compu- of d, this ratic asymptotically approaches 2/d.
tationally advantageous even when compared with
the 1-D radix 4, 8 and 16 algorithms. However,
the coding complexity will increase dramatically REFERENCES
with increases in the radix size for the vector
radix approach. The rather marginal decrease in [1] Cooley, J. W., and J. W. Tukey, "An Algorithm
multiplies in the radix 8x8 case as compared to for the Machine Calculation of Complex
the radix 4x4 case probably does not justify the Fourier Series," Math. of Comput., vol. 19,
extra coding effort. With these facts in mind, pp. 297-301, April 1965.
we speculate that the radix 4x4 algorithm will be
the algorithm of choice for most applications [2] Rivard, G. E., “"Algorithm for Direct Fast
involving machines limited by computational speed Fourier Transform of Bivariant Functions,"

or machines with sufficient core storage to hold
the entire array.

Massachusetts, October 1975.

In situations where the DFT is implemented on
an I/0 intensive machine and must not be in
scrambled order, the row-column approach may be
preferable. The row-column algorithm of any radix
requires one fewer transfer than the vector radix
2x2 algorithm. When the amount of core storage
is sufficient for a number of rows which is not a
power of 4, the row-column algorithms require
substantially fewer transfers than the vector

Matrix Transposin

g," IEEE Trans. o

paper presented at the 1975 Annual Meeting
of the Optical Society of America, Boston,

[3] Eklundh, J. O., "A Fast Computer Method for

n Compu-

ters, vol. C-21, pp. 801-803, July 1972.

radix 4x4 algorithm. In such cases, the row-
column approach makes better use of increased core
memory size. .

Transforms of non-square arrays can be accomo-
dated in the vector radix approach by means of
mixed radix algorithms. For example, Nx2N trans-
forms may be computed with one stage of radix 2x4
butterflies, followed by loqu*l stages of radix

2x2 butterflies.

In conclusion, we note that the vector radix
algorithm can be generalized to higher dimensional
transforms. In three dimensions, decimation in all
three indices of the array simultaneously leads to
a radix 2x2x2 algorithm. This algorithm requires
7/12 the number of multiplies that a conventional
algorithm using 1-D FFT's requires. This ratio
improves with higher dimensionality and is equal to

TABLE OF OPERATION COUNTS (N=2")

Disk Accesses Multiplies per Number of

FFT TYPE Radix 2 4 8 16 Butterfly* Butterflies

VR 2x2 v+l V/2+41 V/3+41 v/4+1 340 1/4 N2V

VR 4x4 - V/2+41 V/2+1 V/4+1 1540 1/32 sz

VR 8x8 - - V/3+1 V/3+1 63+24 17192 N2V

RC 2 v v/2 v/3 v/4 1+0 sz

RC 4 v /2 v/3 v/4 340 1/4 sz

RC 8 NE v/3 v/4 742 1/12 sz

RC 16 v ov/2 v/3 v/4 1549 1/32 sz

ACCESSION for

NTIS White Section
0DC .t Section O
UNANNOUNCED D

JUSTIFICATION o oo

- -

Dis¢

BY :
mmmnmmmmmq@__
Lo . SO

|

Total Number
of Multiplies

3/4 N2(V-1)

15/32 N2 (v-2)

29/64 NZ(V'63/29)
N2 (v-1)

3/4 Nz(v-Z)

3/4 N2 (v=7/3)

3/4 NZ(V- 5/2)

Ratio
« 79
.426
.405

1.00
.682
.659
.648

*Twiddle factor multiplies (first) and internal butterfly multiplies (second) are tabulated separately.

